时间:2023-04-17 | 来源:
冯红银萍,教授,博士生导师,现为山西大学数学科学学院教师。2013年毕业于山西大学基础数学专业,获理学博士学位。长期从事分布参数系统控制、自抗扰控制、线性系统动态补偿等方面的研究工作, 创立了无穷维动态补偿方法。近年来还关注无穷维动态补偿方法在图像边缘检测、信号处理、多智能体控制、无穷维系统数值离散以及金融时间序列预测等方面的跨学科交叉应用。
电子邮箱:fhyp@sxu.edu.cn
通信地址:太原市小店区坞城路92号,山西大学数学科学学院,030006
教育工作经历
2010年9月至2013年7月, 山西大学, 基础数学, 博士;
2003年9月至2006年7月, 山西大学, 运筹学与控制论, 硕士;
1999年9月至2003年7月, 山西大学, 信息与计算科学, 学士。
2015年12月至今, 山西大学, 数学科学学院, 教授;
2010 年 10 月至 2015 年 12 月, 山西大学, 数学科学学院, 讲师;
2006 年 7 月至 2010 年 10 月, 山西大学, 数学科学学院, 助教。
曾在南非金山大学、芬兰坦佩雷理工大学、复旦大学、中国科学院数学与系统科学研究院做访问学者。
科研项目
1国家自然科学基金, 面上项目, 62273217, 2023-01至 2026-12, 54万元, 主持;
2山西省科技厅,山西省杰出青年培育项目,202203021223002,2023-01至2025-12,50万元,主持;
3国家自然科学基金, 重点项目,12131008,2022-01至2026-12, 253万, 参与, 划拨63.8万元;
4国家自然科学基金, 面上项目, 61873153, 2019-01至2022-12, 63万元, 主持;
5国家自然科学基金, 青年项目, 61403239, 2015-01至2017-12, 25万元, 主持;
6山西省教育厅,2014高校科技创新项目,2014101,2014-07-14至2016-06-30, 4万元,主持;
7山西省科技厅,青年基金,2015021010,2015-05-18至2017-12-31,2万元,主持;
8山西省教育厅(省、市自治区研究),山西省高等学校教学改革项目,J2018046,2018-10-29至2019-12-31,1万元, 主持;
9 欧盟(芬兰),CIMA Asia Programme for education cooperation with China,2016-2018,4万(欧元),参与(中芬合作教学,中方主要负责人之一);
10 山西省发改委, 山西大学人工智能交叉科技创新平台, 022SXSFGW-CXPT01, 山西大学人工智能交叉科技创新平台, 2022-01 至 2025-01, 250万元, 在研, 参与;
11 科学技术部高技术研究发展中心, 科技创新2030-"新一代人工智能"重大项目, 2021ZD0112400, 复杂动态系统智能理论与方法, 2021-12 至 2024-11, 200万元, 在研, 参与。
教学
本科生课程:高等数学、数学分析、拓扑学、数值分析、数值分析实验
研究生课程:代数拓扑,无穷维线性系统,自抗扰控制
期刊论文及其他成果
2024年
[1] Pei-Hua Lang* and H. Feng, The active disturbance rejection control approach to output feedback stabilization of an anti-stable wave equation with corrupted boundary observation, J. Math.Anal.Appl, 536 (2024) 128194.
[2] R.L. Wen, H. Feng*,Output tracking for ODE system via unstable heat actuator dynamics with mismatched disturbance, International Journal of Control, DOI: 10.1080/00207179.2024.2337212
2023年
[1] H. Feng, Xiao-Hui Wu and Bao-Zhu Guo,Dynamics Compensation Approach to Stabilization and Observation for Abstract Linear Systems, J. Math.Anal.Appl, 518 (2023), 126710.
[2] H. Feng* and B.Z. Guo, Extended dynamics observer for linear systems with disturbance, European Journal of Control, 71 (2023), 100806.
[3] 软件著作权: 基于扩张动态的辐射数据处理系统, 证书号:11199991号,No. 12706631 登记号:2023SR0612820, 完成日期:2023.04.07, 批准日期:2023.06.09
2022年
[1] H. Feng and Yuhua Qian, A linear differentiator based on the extended dynamics approach, IEEE Transactions on Automatic Control, 67(2022), 6962-6967.
[2] 冯红银萍,王丽,线性系统执行动态和观测动态的补偿,山西大学学报(自然科学版),45(2022), 568-590.
[3] H. Feng , P.H. Lang and J. Liu, Boundary stabilization and observation of a weak unstable heat equation in a general multi-dimensional domain, Automatica, 138 (2022) ,110152.
[4] 冯红银萍,线性系统动态补偿理论,科学出版社,2022年5月,46.8万字
2021年
[1] R.L. Wen, H. Feng*,Performance output tracking for cascaded heat PDE-ODE systems subject to unmatched disturbance, International Journal of Robust and Nonlinear Control, (2021),1-22.
[2] 张小英, 王平, 冯红银萍,常微分方程-薛定谔方程耦合系统的输出反馈镇定,系统科学与数学,4(2021),887-897.
[3] Zhang Xiaoying*, H. Feng, Output tracking for one-dimensional Schrodinger equation with boundary control unmatched disturbance, Control Theory & Applications, 38(2021), 373-379.
[4] P. Wang*, X. He, H. Feng, G. Zhang and C. Rong, A Hybrid Model for PM2.5 Concentration Forecasting Based on Neighbor Structural Information, a Case in North China, Sustainability, 13(2021) , 447. https://doi.org/10.3390/su13020447
[5] Ping Wang*, H. Feng, Xu Bi, Yongyong Fu, Xuran He, Guisheng Zhang, Jiawei Niu, Phase objectives analysis for PM2.5 reduction using dynamics forecasting approach under different scenarios of PGDP decline, Ecological Indicators, 129 (2021), 108003.
[6] H. Feng, Delay compensation for regular linear systems, Journal of Differential Equations, 302 (2021), 680–709.
[7] 冯红银萍,带干扰线性系统的动态补偿,山西大学学报(自然科学版),2021,44(5): 851-876. DOI:10.13451/j.sxu.ns.2021054
[8]Li Wang, H. Feng , Performance output tracking for a one-dimensional unstable heat equation with input delay, IMA Journal of Mathematical Control and Information, 39(2022), 254-274. DOI: 10.1093/imamci/dnab046
2020年
[1] H. Feng*, B.Z.Guo, and X.H.Wu, Trajectory planning approach to output tracking for a 1-D wave equation, IEEE Transactions on Automatic Control, 65(2020), 1841- 1854.(Full paper)
[2] X.H.Wu and H. Feng*, Output tracking for a 1-D heat equation with non-collocated configurations, Journal of the Franklin Institute, 357(2020) , 3299-3315.
[3] H.C. Zhou and H. Feng*, Stabilization for Euler-Bernoulli beam equation with boundary moment control and disturbance via a new disturbance estimator, Journal of Dynamical and Control Systems, 27 (2021), 247-259. DOI: 10.1007/s10883-020- 09492-4.
[4] 支霞, 冯红银萍,输入带有时滞的线性系统的镇定,系统科学与数学,41(2021),17-23.
[5] Ping Wang*, H. Feng, G. Zhang and D. Yu, A period-aware hybrid model applied for
forecasting AQI time series, Sustainability, 12(2020), 4730. https://doi.org/10.3390/su 12114730
[6] H. Feng, C.Z. Xu*, and P.F.Yao, Observers and disturbance rejection control for a
heat equation, IEEE Transactions on Automatic Control, 65(2020), 4957-4964. 10.1109/TAC.2020.3022849.
[7] X.H. Wu and H. Feng*, Exponential stabilization of an ODE system with Euler–Bernoulli beam actuator dynamics, SCIENCE CHINA Information Sciences, 65 (2022), 159202:1-2.
[8] X.H. Wu, H. Feng and B.Z. Guo*, Output feedback stabilization for 1-D wave equation with variable coefficients and non-collocated observation, Systems & Control Letters, 145 (2020) 104780.
2020年以前
[1] Jing Wei, H. Feng* and Bao-Zhu Guo, Asymptotic stabilization for a wave equation with periodic disturbance, IMA Journal of Mathematical Control and Information, 37 (2020), 894–917.
[2] Jing Wei and H. Feng* , Output tracking for one-dimensional wave equation with non-collocated control and output configuration, J Syst Sci Complex, (2020), 33: 1469-1484
[3]H.C. Zhou and H. Feng, Disturbance estimator based output feedback exponential stabilization for Euler-Bernoulli beam equation with boundary control, Automatica, 91 (2018),79-88.
[4] Xiaoying Zhang, H. Feng*, Shugen Chai, Output feedback stabilization for an anti-stable Schrodinger equation with internal unknown dynamic and external disturbance, Journal of The Franklin Institute, 355 (2018), 5632–5648.
[5] H. Feng and B.Z.Guo*,Active disturbance rejection control: Old and new results,Annual Reviews in Control, 44 (2017) , 238-248.
[6] H. Feng* and B.Z.Guo, Observer design and exponential stabilization for wave equation in energy space by boundary displacement measurement only, IEEE Transactions on Automatic Control, 62(2017), 1438-1444.
[7] H. Feng* and B.Z.Guo, A new active disturbance rejection control to output feedback stabilization for a one-dimensional anti-stable wave equation with disturbance, IEEE Transactions on Automatic Control, 62(2017), 3774-3787. (Full paper)
[8] Rui-Li Wen, Shu-Gen Chai and H. Feng, Adaptive stabilization and parameters estimation for a Kirchhoff's nonlinear beam with uncertain input disturbances under boundary output feedback control, Int J Adapt Control Signal Process. 31(2017), 1375–1387.
[9] H. Feng and B.Z.Guo, New unknown input observer and output feedback stabilization for uncertain heat equation, Automatica, 86 (2017) ,1-10.
[10] Wei Guo, Yunlan Chen, and H. Feng*, Output feedback stabilization for a Kirchhoff-type nonlinear beam with general corrupted boundary observation, Int. J. Robust Nonlinear Control, 27(2017), 3280-3295.
[11] H. Feng*, Stabilization of One-dimensional Wave Equation with Van Der Pol Type Boundary Condition, SIAM Journal on Control and Optimization, 54(2016), 2436-2449.
[12] H. Feng* and B.Z.Guo, Distributed disturbance estimator and application to stabilization for multi-dimensional wave equation with corrupted boundary observation, Automatica, 66(2016), 25–33.
[13] Tian Zi-Qing,H. Feng* , Stabilization of one-dimensional wave equation by non-collocated boundary feedback,European Journal of Control,32 (2016) 39–42.
[14] Zhang Xiaoying,H. Feng *,Chai Shugen,Performance output exponential tracking for a wave equation with a general boundary disturbance,Systems & Control Letters,98 (2016), 79-85.
[15] G. Zhang, X. Zhang* and H. Feng, Forecasting financial time series using a methodology based on autoregressive integrated moving average and Taylor expansion, Expert Systems, 33(2016), 501–516.
[16] H. Feng* and B.Z.Guo, On stability equivalence between dynamic output feedback and static output feedback for a class of second order infinite-dimensional systems, SIAM Journal on Control and Optimization, 53(2015), 1934-1955.
[17] H. Feng* and B.Z.Guo, Output feedback stabilization for unstable wave equation with general corrupted boundary observation, Automatica, 50 (2014), 3164-3172.
[18] H. Feng* and S. Li, Active disturbance rejection control based on weighed-moving-average- state-observer, J. Math.Anal.Appl.,411(2014), 354–361.
[19] H. Feng* and S. Li, The stability for a one-dimensional wave equation with nonlinear uncertainty on the boundary, Nonlinear Analysis, 89 (2013) 202–207.
[20] H. Feng* and S. Li, A tracking differentiator based on Taylor expansion, Applied Mathematics Letters, 26 (2013) ,735–740.
[21] H. Feng*, S. Li and X. Zhi, A direct method for global nonexistence of one demensional wave equation with nonlinear boundary-source, Indian J. Pure Appl. Math., 44(2013), 683-694.
[22] J. Li, H. Feng and J. Wu, Stabilization of a semilinear wave equation with variable coefficients and a delay term in the boundary feedback, Electronic Journal of Differential Equations, 112 (2013), 1-18.
[23] S. Li, H. Feng* and J.Wu, Blow-up solutions for a string equation with nonlinear boundary source and arbitrary-initial-energy, Nonlinear Analysis, 75 (2012), 5653–5663.
[24] H. Feng*,S. Li, Global nonexistence for a semilinear wave equation with nonlinear boundary dissipation, J. Math.Anal.Appl., 391 (2012), 255–264.
[25] H. Feng*,S. Li and X. Zhi, Blow-up solutions for a nonlinear wave equation with boundary damping and interior source, Nonlinear Analysis, 75 (2012), 2273–2280.
李雷,冯红银萍,贾新春,一种汽车自抗扰悬挂系统与控制方法,2016.08.24,
中国,专利号:ZL 2014 1 0771094.2, 申请号CN201410771094.2 专利