教授
教授
当前位置: 首页 » 师资队伍 » 教授

冯红银萍

时间:2023-04-17 | 来源:

冯红银萍,教授,博士生导师,现为山西大学数学科学学院教师。2013年毕业于山西大学基础数学专业,获理学博士学位。长期从事分布参数系统控制、自抗扰控制、线性系统动态补偿等方面的研究工作. 除无穷维控制理论之外,感兴趣的研究领域还有多智能体控制、无穷维系统数值离散以及时间序列预测等。

电子邮箱:fhyp@sxu.edu.cn

通信地址:太原市小店区坞城路92号,山西大学数学科学学院,030006


教育工作经历

20109月–20137, 山西大学, 基础数学, 博士;

20039月–20067, 山西大学, 运筹学与控制论, 硕士;

19999月–20037, 山西大学, 信息与计算科学, 学士;

201512-至今, 山西大学, 数学科学学院, 教授,

曾在复旦大学、芬兰坦佩雷理工大学、 中国科学院数学与系统科学研究院、南非金山大学做访问学者.


科研项目

1 国家自然科学基金委员会, 面上项目, 62273217, 带干扰抽象线性系统的动态反馈控制及应用, 202301月至 202612, 54万元, 主持;

2 山西省科技厅,山西省杰出青年培育项目,202203021223002,干扰处理的动态补偿方法及其应用,2023-012025-1250万元,主持;

3国家自然科学基金委员会, 重点项目,12131008,不确定偏微分系统的抗扰输出调节理论,2022-012026-12253万, 参与,划拨63.8万元;

4 国家自然科学基金委员会, 面上项目, 61873153, 2019-012022-12, 63万元, 主持;

5 国家自然科学基金委员会, 青年项目, 61403239, 2015-012017-12, 25万元, 主持;

6 山西省教育厅,2014高校科技创新项目,20141012014-07-142016-06-304万元,主持;

7 山西省科技厅,青年基金,20150210102015-05-182017-12-312万元,主持;

8 山西省教育厅(省、市自治区研究),山西省高等学校教学改革项目,J20180462018-10-292019-12-311万元, 主持


教学

本科生课程:高等数学、数学分析、拓扑学、数值分析、数值分析实验

研究生课程:代数拓扑,无穷维线性系统,自抗扰控制


1.期刊论文

2023

[1] H. Feng, Xiao-Hui Wu and Bao-Zhu GuoDynamics Compensation Approach to Stabilization and Observation for Abstract Linear Systems, J. Math.Anal.Appl, 518 (2023), 126710.

[2] H. Feng* and B.Z. Guo, Extended dynamics observer for linear systems with disturbance, European Journal of Control, 71 (2023), 100806.

2022

[1] H. Feng and Yuhua Qian, A linear differentiator based on the extended dynamics approach, IEEE Transactions on Automatic Control, 672022, 6962-6967.

[2] 冯红银萍,王丽,线性系统执行动态和观测动态的补偿,山西大学学报(自然科学版),45(2022), 568-590.

[3] H. Feng , P.H. Lang and J. Liu, Boundary stabilization and observation of a weak unstable heat equation in a general multi-dimensional domain, Automatica, 138 (2022) ,110152.

[4] 冯红银萍,线性系统动态补偿理论,科学出版社,20225月,46.8万字

2021

[1] R.L. Wen, H. Feng*Performance output tracking for cascaded heat PDE-ODE systems subject to unmatched disturbance, International Journal of Robust and Nonlinear Control, (2021),1-22.

[2] 张小英, 王平, 冯红银萍,常微分方程-薛定谔方程耦合系统的输出反馈镇定,系统科学与数学,4(2021),887-897.

[3] Zhang Xiaoying*, H. Feng, Output tracking for one-dimensional Schrodinger equation with boundary control unmatched disturbance, Control Theory & Applications, 38(2021), 373-379.

[4] P. Wang*, X. He, H. Feng, G. Zhang and C. Rong, A Hybrid Model for PM2.5 Concentration Forecasting Based on Neighbor Structural Information, a Case in North China, Sustainability, 13(2021) , 447. https://doi.org/10.3390/su13020447

[5] Ping Wang*, H. Feng, Xu Bi, Yongyong Fu, Xuran He, Guisheng Zhang, Jiawei Niu, Phase objectives analysis for PM2.5 reduction using dynamics forecasting approach under different scenarios of PGDP decline, Ecological Indicators, 129 (2021), 108003.

[6] H. Feng, Delay compensation for regular linear systems, Journal of Differential Equations, 302 (2021), 680–709.

[7] 冯红银萍,带干扰线性系统的动态补偿,山西大学学报(自然科学版),2021,44(5): 851-876. DOI:10.13451/j.sxu.ns.2021054

[8]Li Wang, H. Feng ,  Performance output tracking for a one-dimensional unstable heat equation with input delay, IMA Journal of Mathematical Control and Information, 39(2022), 254-274. DOI: 10.1093/imamci/dnab046

2020

[1] H. Feng*, B.Z.Guo, and X.H.Wu, Trajectory planning approach to output tracking for a 1-D wave equation, IEEE Transactions on Automatic Control, 65(2020), 1841--1854.(Full paper)

[2] X.H.Wu and H.Feng*, Output tracking for a 1-D heat equation with non-collocated configurations, Journal of the Franklin Institute, 357(2020) , 3299-3315. 2top

[3] H.C. Zhou and H. Feng*, Stabilization for Euler-Bernoulli beam equation with boundary moment control and disturbance via a new disturbance estimator, Journal of Dynamical and Control Systems, 27 (2021), 247-259. DOI: 10.1007/s10883-020-09492-4.

[4] 支霞, 冯红银萍,输入带有时滞的线性系统的镇定,系统科学与数学,41(2021),17-23.

[5] Ping Wang*, H. Feng, G. Zhang and D. Yu, A period-aware hybrid model applied for

forecasting AQI time series, Sustainability, 12(2020), 4730. https://doi.org/10.3390/su12114730

[6] H. Feng, C.Z. Xu*, and P.F.Yao, Observers and disturbance rejection control for a

heat equation, IEEE Transactions on Automatic Control, 65(2020), 4957-4964. 10.1109/TAC.2020.3022849.

[7] X.H. Wu and H. Feng*, Exponential stabilization of an ODE system with Euler–Bernoulli beam actuator dynamics, SCIENCE CHINA Information Sciences, 65 (2022), 159202:1-2. 2

[8] X.H. Wu, H. Feng and B.Z. Guo*, Output feedback stabilization for 1-D wave equation with variable coefficients and non-collocated observation, Systems & Control Letters, 145 (2020) 104780.

2020年以前

[1] Jing Wei, H. Feng* and Bao-Zhu Guo, Asymptotic stabilization for a wave equation with periodic disturbance, IMA Journal of Mathematical Control and Information, 37 (2020), 894–917.

[2] Jing Wei and H. Feng* , Output tracking for one-dimensional wave equation with non-collocated control and output configuration, J Syst Sci Complex, (2020), 33: 1469-1484

[3]H.C. Zhou and H. Feng, Disturbance estimator based output feedback exponential  stabilization for Euler-Bernoulli beam equation with boundary control, Automatica, 91 (2018),79-88.

[4] Xiaoying Zhang, H. Feng*, Shugen Chai, Output feedback stabilization for an anti-stable Schrodinger equation with internal unknown dynamic and external disturbance, Journal of The Franklin Institute, 355 (2018), 5632–5648.

[5] H. Feng and B.Z.Guo*Active disturbance rejection control: Old and new resultsAnnual Reviews in Control, 44 (2017) , 238-248.

[6] H. Feng* and B.Z.Guo, Observer design and exponential stabilization for wave equation in energy space by boundary displacement measurement only, IEEE Transactions on Automatic Control, 62(2017), 1438-1444.

[7] H. Feng* and B.Z.Guo, A new active disturbance rejection control to output feedback stabilization for a one-dimensional anti-stable wave equation with disturbance, IEEE Transactions on Automatic Control, 62(2017), 3774-3787. (Full paper)

[8] Rui-Li Wen, Shu-Gen Chai and H. Feng, Adaptive stabilization and parameters estimation for a Kirchhoff's nonlinear beam with uncertain input disturbances under boundary output feedback control, Int J Adapt Control Signal Process. 31(2017), 1375–1387.

[9] H. Feng and B.Z.Guo, New unknown input observer and output feedback stabilization for uncertain heat equation, Automatica, 86 (2017) ,1-10.

[10] Wei Guo, Yunlan Chen, and H. Feng*, Output feedback stabilization for a Kirchhoff-type nonlinear beam with general corrupted boundary observation, Int. J. Robust Nonlinear Control, 27(2017), 3280-3295.

[11] H. Feng*, Stabilization of One-dimensional Wave Equation with Van Der Pol Type Boundary Condition, SIAM Journal on Control and Optimization, 54(2016), 2436-2449.

[12] H. Feng* and B.Z.Guo, Distributed disturbance estimator and application to stabilization for multi-dimensional wave equation with corrupted boundary observation, Automatica, 66(2016), 25–33.

[13] Tian Zi-QingH. Feng* , Stabilization of one-dimensional wave equation by non-collocated boundary feedbackEuropean Journal of Control32 (2016) 39–42.

[14] Zhang XiaoyingH. Feng *Chai ShugenPerformance output exponential tracking for a wave equation with a general boundary disturbanceSystems & Control Letters98 (2016), 79-85.

[15] G. Zhang, X. Zhang* and  H. Feng, Forecasting financial time series using a methodology based on autoregressive integrated moving average and Taylor expansion, Expert Systems, 33(2016), 501–516.

[16] H. Feng* and B.Z.Guo, On stability equivalence between dynamic output feedback and static output feedback for a class of second order infinite-dimensional systems, SIAM Journal on Control and Optimization, 53(2015), 1934-1955.

[17] H. Feng* and B.Z.Guo, Output feedback stabilization for unstable wave equation with general corrupted boundary observation, Automatica, 50 (2014), 3164-3172.

[18] H. Feng* and S. Li, Active disturbance rejection control based on weighed-moving-average- state-observer, J. Math.Anal.Appl.,411(2014), 354–361.

[19] H. Feng* and S. Li, The stability for a one-dimensional wave equation with nonlinear uncertainty on the boundary, Nonlinear Analysis, 89 (2013) 202–207.

[20] H. Feng* and S. Li, A tracking differentiator based on Taylor expansion, Applied Mathematics Letters, 26 (2013) ,735–740.

[21] H. Feng*,S. Li and X. Zhi, A direct method for global nonexistence of one demensional wave equation with nonlinear boundary-source, Indian J. Pure Appl. Math., 44(2013), 683-694.

[22] J. Li, H. Feng and J. Wu, Stabilization of a semilinear wave equation with variable coefficients and a delay term in the boundary feedback, Electronic Journal of Differential Equations, 112 (2013), 1-18.

[23] S. Li, H. Feng* and J.Wu, Blow-up solutions for a string equation with nonlinear boundary source and arbitrary-initial-energy, Nonlinear Analysis, 75 (2012), 5653–5663.

[24] H. Feng*,S. Li, Global nonexistence for a semilinear wave equation with nonlinear boundary dissipation, J. Math.Anal.Appl., 391 (2012), 255–264.

[25] H. Feng*,S. Li and X. Zhi, Blow-up solutions for a nonlinear wave equation with boundary damping and interior source, Nonlinear Analysis, 75 (2012), 2273–2280.