时间:2023-09-11 | 来源:
姓名: 乔雷洁,女,博士,1989年生,副教授。主要研究方向:偏微分方程数值解,机器学习
电子邮箱:qiaoleijie@yeah.net
通信地址:山西省太原市小店区坞城路92号山西大学
教育经历
2009.09-2013.06 忻州师范学院 应用数学
2013.09-2018.07 湖南师范大学 数学与统计学院 计算数学 硕博连读
工作经历
2022.5-至今 山西大学 副教授
2021.07-2022.12 北京大学 访问学者
2019.12-2020.09 英国切斯特大学 访问学者
2018.07-2020.07 广东工业大学 博士后
科研项目
2022.01-2024.12 国家自然科学基金青年科学基金项目 项目负责人
2022.01-2022.12 国家自然科学基金天元数学访问学者项目项目负责人
2022.01-2024.12 湖南省科技厅一般项目 项目负责人
2022.01-2024.12 湖南省自然科学基金青年基金项目 项目负责人
2017.01-2020.12 国家自然科学基金面上项目 项目参与者
2016.01-2018.02 湖南师范大学研究生科研创新项目
教学
1. 数学分析(上),2022年秋.
2. 数学分析(下),2023年春.
学术论文
[1] L. Qiao, D. Xu, W. Qiu*, A second-order ADI difference scheme based on non-uniform meshes for the three-dimensional nonlocal evolution problem, Comput. Math. Appl. 102 (2021) 137-145.
[2] L. Qiao, B. Tang*, An accurate, robust, and efficient finite difference scheme with graded meshes for the time-fractional Burgers’ equation, Appl. Math. Lett. 128 (2022) 107908.
[3] L. Qiao, D. Xu, Z. Wang*, An alternating direction implicit orthogonal spline collocation method for the two dimensional multi-term time fractional integro-differential equation, Appl. Numer. Math. 151 (2020) 199-212.
[4] L. Qiao, D. Xu, Y. Yan, High-order ADI orthogonal spline collocation method for a new 2D fractional integro-differential problem, Math. Meth. Appl. Sci. (2020) DOI: 10.1002/mm a.6258.
[5] L. Qiao*, D. Xu, A fast ADI orthogonal spline collocation method with graded meshes for the two-dimensional fractional integro-differential equation, Adva. Comput. Math. 64 (2021) https://doi.org/ 10.1007/ s07/ s 10444-021-09884-5.
[6] L. Qiao, D. Xu, B. Tang*, J. Zhou, Fast ADI difference/compact difference schemes for the nonlocal evolution equation with weakly singular kernels in three dimensions, Math. Comput. Simu. 194 (2021) 329-347.
[7] L. Qiao*, D. Xu, Orthogonal spline collocation method for the two-dimensional time fractional mobile-immobile equation, J. Appl. Math. Comp. (2021) DOI:10.1007/S12190-021-01661-3.
[8] L. Qiao, W. Qiu*, D. Xu, Error analysis of fast L1 ADI finite difference/compact difference schemes for the fractional telegraph equation in three dimensions, Math. Comput. Simu. 205 (2023) 205-231.
[9] L. Qiao, B. Tang*, D. Xu, W. Qiu, High-order orthogonal spline collocation method with graded meshes for two-dimensional fractional evolution integro-differential equation, Int. J. Comput. Math. 99 (2022) 1305-1322.
[10] L. Qiao, D. Xu, Z. Wang*, Orthogonal spline collocation method for the two- dimensional time fractional mobile-immobile equation, J. Appl. Math. Comput. 68 (2022) 3199-3217.
[11] L. Qiao, O. Nikan, Z. Avazzadeh*, Some efficient numerical schemes for approximating the nonlinear two-space dimensional extended Fisher-Kolmogorov equation, Appl. Numer. Math. 185 (2023) 466-482.
[12] L. Qiao, W. Qiu*, D. Xu, Crank-Nicolson ADI finite difference/compact difference schemes for the 3D tempered integrodifferential equation associated with Brownian motion, https://doi.org/10.1007/s 11075-022-01454-0. Numer. Algor. (2023).
[13] L. Qiao, W. Qiu*, B. Tang, A fast numerical solution of the 3D nonlinear tempered fractional integrodifferential equation, Numer. Methods Part. Differ. Equ. 39 (2023) 1333-1354.
[14] J. Zhou, D. Xu, W. Qiu, L. Qiao*, An accurate, robust, and efficient weak Galerkin finite element scheme with graded meshes for the time-fractional quasi-linear diffusion equation, Comput. Math. Appl. 124 (2022) 188-195.
[15] L. Qiao*, D. Xu, BDF ADI orthogonal spline collocation scheme for the fractional integro- differential equation with two weakly singular kernels, Comput. Math. Appl. 78 (2019) 3807-3820.
[16] L. Qiao, D. Xu, Z. Wang*, An ADI finite difference scheme based on fractional trapezoidal rule for fractional integro-differential equation with a weakly singular kernel, Appl. Math. Comput. 354 (2019) 103-114.
[17] L. Qiao*, D. Xu, Orthogonal spline collocation scheme for the multi-term time fractional diffusion equation, Int. J. Comput. Math. 95 (2018) 478-1493.
[18] L. Qiao*, D. Xu, Compact alternating direction implicit scheme for integro-differential equations of parabolic type, J. Sci. Comput. 76 (2018) 565-582.
[19] B. Tang*, L. Qiao, D. Xu, An ADI orthogonal spline collocation method for a new two-dimensional distributed-order fractional integro-differential equation, Comput. Math. Appl. 132 (2023) 104-118.
[20] Q. Huang, L. Qiao, B. Tang*, High-order orthogonal spline collocation ADI scheme for a new complex two-dimensional distributed-order fractional integro-differential equation with two weakly singular kernels, Int. J. Comput. Math. 100 (2023) 703-721.
[21] X. Fang, L. Qiao, F. Zhang, F. Sun, Explore deep network for a class of fractional partial differential equations, Chaos Solit. Fract.172 (2023)113528.
[22] L. Qiao, D. Xu, W. Qiu, The formally second-order BDF ADI difference/compact difference scheme for the nonlocal evolution problem in three-dimensional space, Appl. Numer. Math. 172 (2022) 359-381.
[23] L. Qiao, J. Guo, W. Qiu, Fast BDF2 ADI methods for the multi-dimensional tempered fractional integrodifferential equation of parabolic type, Comput. Math. Appl.123 (2022) 89-104.
[24] R. Wang, L. Qiao*, A. Zaky, A. Hendy, A second-order finite difference scheme for nonlinear tempered fractional integrodifferential equations in three dimensions, Numer. Algor.
https://doi.org/10.1007/s11075-023-01573-2. (2023).